|
\( \begin{align*} P(x) & =a \bigg[ \bigg(x+\frac{b}{2a}\bigg)^2 \bigg] && = a \bigg(x-\frac{-b}{2a}\bigg)^2 && = a \bigg(x-x_0 \bigg)^2 \end{align*} \) \(P(x)\) a une racine double : \(\begin{align*}x_0 = \frac{-b}{2a} \end{align*}\) et \(P(x) = a(x-x_0)^2\)
\[ \begin{align*}I = \int \frac{1}{a(x-x_0)^2}dx \end{align*}\]
Changement de variable: \(\begin{align*} & u = x -x_0 && du = dx \end{align*}\) \(\begin{align*} I & = \int \frac{1}{a u^2}du && = \frac{1}{a}\int u^{-2}du && =\frac{1}{a} \times \bigg[ \frac{-1}{u} \bigg] + C \\ & = \frac{-1}{au} + C && =\frac{-1}{a(x-x_0)} + C && =\frac{-1}{a(x+\frac{b}{2a})} + C \end{align*}\)
Si \(\Delta = 0\)
\[ \boxed{ \begin{align*} \int \frac{1}{a(x-x_0)^2}dx = - \frac{1}{ax+\frac{b}{2}} +C \end{align*} }\]
Exemple: \( \begin{align*} I = \int \frac{1}{2x²+4x+2}dx = - \frac{1}{2x+2} \end{align*} \)
\( \begin{align*} I & = \int \frac{1}{2x²+4x+2}dx = \int \frac{1}{2(x²+2x+1)}dx \\ & = \frac{1}{2} \int \frac{1}{(x+1)^2}dx \end{align*} \) Soit on fait le changement de variable \( u = x+1\),, et on arrive au résultat , soit on est assez fort pour voir que \( \begin{align*}\int \frac{1}{(x+1)^2}dx = -\frac{1}{x+1} \end{align*}\)
|