Dans  cette feuille d'exercices, nous considèrerons que toutes les propriétés permettant l'intégration /primitivation, sont réunies.

  • Les fonctions à intégrer sont définies sur le domaine de dérivations
  • Les fonctions à intégrer sont continues sur le domaine de dérivations
  • Le cas échéant, les fonctions à intégrer sont de classe \(C^1\) ou plus sur le domaine de dérivations
  • Les fonctions à intégrer sont convergentes  sur le domaine de dérivations
  • etc... etc ... 

Ces exercices ont été classés par technique de primitivation / intégration.
Plusieurs techniques peuvent être mises en oeuvre sur un exercice. Donc un exercice peut être répertorié dans plusieurs techniques. A vous de prendre le train en marche pour travailler la technique qui vous intéresse, ou de faire l 'exercice entier si vous travaillez toutes les techniques en même temps.

Les premières techniques ("Combinaisons linéaires" et "Régle des puissances" n'ont pas d'exercices répertoriés particuliers tant c 'est le B-A-BA de l'intégration. 

A la fin, une liste des exercices, non ordonnée, existe. Pas de tri particulier, ni en technique, ni en difficulté.

A vous de jouer 

 

  1. règle des puissances
  2. Combinaisons linéaires
  3. Changement de variable
               
               
               
               
  4. Règles de Bioche
             
  5. Trigonométrie
    1.  \(\int{\frac{tan^5 x}{cos^3 x}} dx\)
           
  6. Intégration par partie
             
  7. notation anglo-saxonne
             
  8. exponentielle
             
  9. logarithme
             
  10. décomposition en éléments simples
             
  11. arc-tangente
             

 

En vrac: 

         

 

  1. \(\int{\frac{tan^5 x}{cos^3 x}} dx\) (1)(2)(3)(4)(6)
  2. \(\int{\frac{cos(2x)}{sinx+cosx}dx}\) (4)
  3. \(\int \frac{x²+1}{x^4-x²+1}dx\) (2)(4)(10)
  4. \(\int(x+e^x)²dx\) (5)(7)
  5. \(\int csc^3x.secx.dx\) (1)(2)(4)(6)(8)
  6. \(\int\frac{cosx}{sin²x-5sinx-6}dx\) (2)(4)(8)(9)
  7. \(\int\frac{1}{\sqrt{e^x}}dx\) (1)(7)
  8. \(\int \frac{e^x.\sqrt{e^x-1}}{e^x+3}dx\) (2)(10)
  9. \(\int\frac{1}{x+\sqrt{x}}dx\) (2)(8)
  10. \(\int_{-1}^{5} \lvert x-3\rvert dx\)
  11. \(\int \frac{sinx}{sec^{2019}x}dx\) (1)(2)(4)(6)
  12. \(\int \frac{x.sin^{-1}x}{\sqrt{1-x²}}dx\) (4)(5)
  13. \(\int \frac{2.sinx}{sin(2x)}dx\) (2)(4)(6)(8)
  14. \(\int cos²(2x)dx\) (4)
  15. \(\int \frac{1}{x^3+1}dx\) (8)(9()(10)
  16. \(\int x.sin²x dx\) (4)(5)
  17. \(\int (x+\frac{1}{x})²dx\) (10)
  18. \(\int \frac{3}{x²+4x+29}dx\) (9)(10)
  19. \(\int cot^5xdx\) (1)(4)(8)
  20. \(\int_{-1}^{1}\frac{tanx}{x^4-x²+1}dx\)
  21. \(\int sin^3xcos²x.dx \) (1)(2)(3)
  22. \(\int \frac{1}{x² \sqrt{x²+1}}dx\) (1)(2)
  23. \(\int sinx.secx.tanx.dx\) (4)(6)
  24. \(\int sec^3x.dx\) (4)(5)(6)
  25. \(\int \frac{1}{x \sqrt{9x²-1}}dx\) (2)(4)(6)
  26. \(\int cos(\sqrt{x}).dx\) (2)(4)(5)
  27. \(\int csc x dx\)
  28. \(\int \sqrt{x²+4x+13}.dx\) (2)(4)(6)
  29. \(\int e^{2x}cosx.dx\) (4)(5)(7)
  30. \(\int^{5}_3 (x-3)^9dx\)
  31. \(\int\frac{1}{\sqrt{x-x^{\frac{3}{2}}}}dx\)
  32. \(\int\frac{1}{\sqrt{x-x²}}dx\)
  33. \(\int e^{2lnx}dx\)
  34. \(\int \frac{lnx}{\sqrt x}dx\)
  35. \(\int \frac{1}{e^x+e^{-x}}dx\)
  36. \(\int log_2x.dx\)
  37. \(\int x^3 sin(2x)dx\)
  38. \(\int x² \sqrt[3]{1+x^3}dx\)
  39. \(\int\frac{1}{(x²+4)²}dx\)
  40. \(\int_{1}^{2}\sqrt{x²-1}dx\)
  41. \(\int sinh(x)dx\)
  42. \(\int sinh²x.dx\)
  43. \(\int sinh^3x.dx\)
  44. \(\int\frac{1}{\sqrt{x²+1}}dx\) à finir 
  45. \(\int ln(x+\sqrt{1+x²})dx\)
  46. \(\int tanhx.dx\)
  47. \(\int sech(x).dx\)
  48. \(\int \sqrt{tanh(x)}.dx\)
  49. \(\int tanh^{-1}(x).dx\)
  50. \(\int_0^5 [x].dx \)
  51. \(\int sec^6x.dx\)
  52. \(\int \frac{1}{(5x-2)^4}dx\)
  53. \(\int ln(1+x²).dx\)
  54. \(\int \frac{1}{x^4+x}dx\)
  55. \(\int \frac{1-tanx}{1+tanx}dx\)
  56. \(\int x.secx.tanx.dx\)
  57. \(\int sec^{-1}x.dx\)
  58. \(\int \frac{1-cosx}{ 1+cosx}.dx\)
  59. \(\int x² \sqrt{x+4}dx\)
  60. \(\int_{-1}^1 \sqrt{4-x²}.dx\)
  61. \(\int\sqrt{x²+4x}dx\)
  62. \(\int x² e^{x^3}dx\)
  63. \(\int x^3 e^{x²}dx\)
  64. \(\int tanx.ln(cosx).dx\)
  65. \(\int \frac{1}{x^3-4x²}dx\)
  66. \(\int sinx.cos(2x)dx\)
  67. \(\int 2lnx.dx\)
  68. \(\int \sqrt{1+cos(2x)}dx\)
  69. \(\int \frac{1}{1+tanx}dx\)
  70. \(\int_{\frac{1}{e}}^e \frac{\sqrt{1-(lnx)²}}{x}dx\)
  71. \(\int \frac{1}{\sqrt[3]x+1}dx\)
  72. \(\int\frac{1}{\sqrt[3]{x+1}}dx\)
  73. \(\int(sinx + cosx)²dx\)
  74. \(\int 2x.ln(1-x)dx\)
  75. \(\int\frac{1}{x(1+sin²(ln(x))}dx\)
  76. \(\int \sqrt{\frac{1-x}{1+x}}dx\)
  77. \(\int x^{\frac{x}{ln(x)}}dx\)
  78. \(\int sin^{-1}(\sqrt{x}) dx\)
  79. \(\int tan^{-1}x.dx\)
  80. \(\int f(x)dx\) f est continue par morceaux
  81. \(\int \frac{sin(1/x)}{x^3}dx\)
  82. \(\int \frac{x-1}{x^4-1}dx\)
  83. \(\int \sqrt{1+(x-\frac{1}{4x})²}dx\)
  84. \(\int \frac{e^{tanx}}{1-sin²x}dx\)
  85. \(\int \frac{arctan(x)}{x²}dx\)
  86. \(\int \frac{arctan(x)}{1+x²}dx\)
  87. \(\int (ln(x))²dx\)
  88. \(\int \frac{\sqrt{x²+4}}{x²} dx\)
  89. \(\int \frac{\sqrt{x+4}}{x}dx\)
  90. \(\int \frac{x^3}{cos^3x+sin^3x}dx\)
  91. \(\int \frac{x}{1+x^4}dx\)
  92. \(\int e^{\sqrt x}dx\)
  93. \(\int \frac{1}{csc^3x}dx\)
  94. \(\int \frac{sin^{-1}x}{\sqrt{1-x²}}dx\)
  95. \(\int \sqrt{1+sin(2x)}dx\)
  96. \(\int \sqrt[4]x.dx\)
  97. \(\int \frac{1}{1+e^x}dx\)
  98. \(\int \sqrt{1+e^x}dx\)
  99. \(\int \frac{\sqrt{tanx}}{sin(2x)}dx\)
  100. \(\int \frac{1}{1+sinx}dx\)