| la fonction \(f\) |
Une primitive de \(f\) |
sur l'interval ... |
remarque |
|
| \(f(x)=0\) |
\(F(x)\) |
\(\mathbb R\) |
|
Terminale |
| \(f(x)=1\) |
\(F(x)=x\) |
\(\mathbb R\) |
|
Terminale |
| \(f(x)=a\) |
\(F(x)=ax\) |
\(\mathbb R\) |
|
Terminale |
| \[ x^n \\ \space \\ n \in \mathbb N-\{ -1 \} \] |
\( \begin{align*}F(x)=\frac{1}{n+1} \times x^{n+1} \end{align*}\) |
\(\mathbb R\) |
- augmenter l'exposant (\( \Rightarrow n+1\)) - puis diviser par le nouvel exposant (\(n+1\)) |
Terminale
|
| \( \begin{align*}\frac{1}{x^n} = x^{-n} \\ \\ n \in \mathbb N^*- \{ 1\} \end{align*}\) |
\( \begin{align*}F(x)= \frac{1}{-n+1} \times x^{-n+1} \\ = \frac{1}{-(n-1)\times x^{n-1}} \end{align*}\) |
\(\mathbb R_-^*\) ou \(\mathbb R_+^*\) |
- on applique la méthode ci-dessus |
Terminale |
| \( \begin{align*}\frac{1}{x} \end{align*}\) |
\( \begin{align*} ln \lvert x \rvert \end{align*}\) |
\(\mathbb R_-^*\) ou \(\mathbb R_+^*\) |
|
Terminale |
| \( \begin{align*}\frac{1}{\sqrt x} = x^{-\frac{1}{2}} \end{align*}\) |
\( \begin{align*}\frac{x^{\frac{1}{2}}}{1/2}+C= 2 \sqrt x \end{align*}\) |
\(\mathbb R^{+*}\) |
- on peut appliquer la méthode ci-dessus |
Terminale |
| \(\begin{align*}f(x) = e^x \end{align*}\) |
\(\begin{align*}F(x) = e^x \end{align*}\) |
\(\mathbb R\) |
- Par définition de \(e^x\) |
|
\(\begin{align*}f(x) = e^{\lambda x} \\ \lambda \in \mathbb C^* \end{align*}\)
|
\(\begin{align*}F(x) = \frac{1}{\lambda} e^{\lambda x} \end{align*}\) |
\(\mathbb R\) |
|
|
| \(\begin{align*}f(x) = ln x \end{align*}\) |
\(\begin{align*}F(x) & = x.lnx-x \end{align*}\) |
\(\mathbb R_+^*\) |
- IPP de \(1 \times lnx\) |
|
| \(\begin{align*}f(x) = sinh x \end{align*}\) |
\(\begin{align*}F(x) & = coshx \end{align*}\) |
\(\mathbb R\) |
|
|
| \(\begin{align*}f(x) = cosh x \end{align*}\) |
\(\begin{align*}F(x) & = sinhx \end{align*}\) |
\(\mathbb R\) |
|
|
| \(\begin{align*}f(x) = cos x \end{align*}\) |
\(\begin{align*}F(x) & = sinx \end{align*}\) |
\(\mathbb R\) |
|
|
| \(\begin{align*}f(x) = sin x \end{align*}\) |
\(\begin{align*}F(x) & = -cosx \end{align*}\) |
\(\mathbb R\) |
|
|
| \(\begin{align*}f(x) = tan x \end{align*}\) |
\(\begin{align*}F(x) & = - ln \lvert cosx \rvert \end{align*}\) |
\[]-\pi/2+k\pi; \pi/2 + k \pi[ \\ ; \space k \in \mathbb Z\] |
|
|
| \(\begin{align*}f(x) = \frac{1}{1+x²} \end{align*}\) |
\(\begin{align*}F(x) & = Arctan x \\ & = tan^{-1}x\end{align*}\) |
\(\mathbb R\) |
|
|
| \(\begin{align*}f(x) = \frac{1}{\sqrt{1-x²}} \end{align*}\) |
\(\begin{align*}F(x) & = Arcsin x \\ & = sin^{-1}x\end{align*}\) |
\(]-1;1[\) |
|
|
| \(\begin{align*}f(x) = \frac{-1}{\sqrt{1-x²}} \end{align*}\) |
\(\begin{align*}F(x) & = Arcos x \\ & = cos^{-1}x \end{align*}\) |
\(]-1;1[\) |
|
|