\(\begin{align*} \int \frac{1}{1+e^x}dx \end{align*}\)

Connaissances:

  • Méthode 1:
    • astuce de calcul (+1/-1)
    • Reconnaissance de la forme \(u'/u\)
  • Méthode 2:
    • Changement de variable
    • Décomposition en éléments simples

 

Methode 1:

\(\begin{align*} I & = \int \frac{1}{1+e^x}dx  \\
& = \int \frac{1+e^x-e^x}{1+e^x}dx  \\
& = \int \frac{1+e^x}{1+e^x}dx- \int \frac{e^x}{1+e^x}dx  \\
& = \int dx- \int \frac{e^x}{1+e^x}dx  \\
& = \boxed{x-ln(1+e^x) + C} \end{align*}\)

 

Méthode 2:

Posons: \(u=1+e^x\)
\( \Rightarrow \begin{cases} e^x = u-1  \\  e^xdx =du \Rightarrow dx = \frac{du}{e^x}= \frac{du}{u-1}\end{cases}    \)
\(\begin{align*} I & = \int \frac{1}{1+e^x}dx  \\
&  = \int \frac{1}{u(u-1)}du \end{align*}\)

Décomposition en éléments simples:
\(\begin{align*} & \frac{1}{u(u-1)} = \frac{a}{u} + \frac{b}{u-1} \\
& \begin{cases} \times (u-1) \text{ et }u=1 & \Rightarrow & b=1 \\ 
\text {si } u =-1 \Rightarrow 1/2 = -a-1/2 & \Rightarrow & a=-1
\end{cases} \\ \\
I & = \int -\frac{1}{u}du + \int \frac{1}{u-1}du \\
& = -lnu + ln(u-1) +C \\
& = -ln(1+e^x) + ln(\cancel{1}+e^x-\cancel{1}) +C \\
& = \boxed{x-ln(1+e^x) + C} \end{align*}\)

\[\boxed {\begin{align*} I & = x-ln(1+e^x) + C(\in \mathbb R) \end{align*}}\]