\(\begin{align*} \int \frac{sin^{-1}x}{\sqrt{1-x²}}dx \end{align*}\)

Connaissances:

  • Trigonométrie
  • Trigonométrie notation anglosaxonne
  • Reconnaitre / construire une forme \(2u'.u\)

\(\begin{align*} I & = \int \frac{sin^{-1}x}{\sqrt{1-x²}}dx  \\
& = \int \frac{1}{\sqrt{1-x²}} \times sin^{-1}x.dx  \\
& = \frac{1}{2 }\int 2 \times \frac{1}{\sqrt{1-x²}} \times sin^{-1}x.dx  \\ 
& = \frac{1}{2 } (sin^{-1}x)² +C \\ \end{align*}\)

\[\boxed {\begin{align*} I & = \frac{1}{2 } (sin^{-1}x)² +C(\in \mathbb R) \end{align*}}\]