\(\begin{align*} \int e^{\sqrt x}dx \end{align*}\)

Connaissances:

  • Changement de variable

 

Posons \(u = \sqrt x \Rightarrow x= u² \Rightarrow dx = 2u.du\)
\(\begin{align*} I & = \int e^{\sqrt x}dx  \\
& = \int e^u.2u.du  \\
& = \int 2ue^udu  \end{align*}\)

Procédons à une IPP:

  \(D\)   \(I\)
\(+\) \(2u\)   \(e^u\)
    \(\searrow\)  
\(-\) \(2\) \(\rightarrow\) \(e^u\)


\(\begin{align*} I & = \int 2ue^udu  \\
& = 2u.e^u - \int 2e^u.du  \\
& =  2ue^u - 2e^u + C \\
& = 2e^u(u-1) + C \\
& = 2e^{\sqrt x}(\sqrt x-1) + C \end{align*}\)

\[\boxed {\begin{align*} I & = 2e^{\sqrt x}(\sqrt x-1) + C(\in \mathbb R) \end{align*}}\]