\(\begin{align*} \int \sqrt{1+cos(2x)}.dx \end{align*}\)

Connaissances:

  • Trigonométrie
  • Primitive de \(cosx\)

\(\begin{align*} I & = \int \sqrt{1+cos(2x)}.dx \\
& = \int \sqrt{1+(2cos²x-1)}.dx \\
& = \int \sqrt{2cos²x}.dx \\
& = \sqrt{2} \int cosx.dx \\
& = \sqrt{2} \times sinx+C \\
 \end{align*}\)

\[\boxed {\begin{align*} I = \sqrt{2} \times sinx+C(\in \mathbb R) \end{align*}}\]