\(\begin{align*} \int cot^5x.dx \end{align*}\) |
Connaissances:
- trigonométrie :\(cotanx = frac{cosx}{sinx}\)
- règle de Bioche
- primitive de polynome
|
\(\begin{align*}
\(\begin{align*}I & = \int \frac{cos^4x}{sin^5x}cosx.dx \\ On pose \(\begin{align*} \begin{cases} u= sinx \\ du = cosx.dx \end{cases} \end{align*}\) \(\begin{align*} I & = \int \frac{(1-u²)²}{u^5}du \\ \[\boxed{I= -\frac{1}{4sin^4x}+\frac{1}{sin²x}+ ln \lvert sinx \rvert + C \in \mathbb R}\] |