\(\begin{align*} \int \frac{\sqrt{tanx}}{sin(2x)}dx \end{align*}\)

Connaissances:

  • Changement de variable
  • Trigonométrie
  • Trigonométrie notation anglosaxonne

 

\(\begin{align*} I & = \int \frac{\sqrt{tanx}}{sin(2x)}dx  \end{align*}\)

Posons le changement de variable:
\(\begin{align*} & \begin{cases} u = \sqrt{tanx} \Rightarrow tan x = u² \\
sec²x.dx =2u.du \Rightarrow dx = \frac{2u.du}{sec²x} \end{cases} \\
I & = \int   \frac{u}{sin(2x)}\frac{2u.du}{sec²x} \\ 
& = \int   \frac{u}{\cancel{2}sinx.\cancel{cosx}} \times cos^{\cancel{2}}x.\cancel{2}u.du \\ 
& = \int \frac{u²cosx}{sinx}du \\
& = \int \frac{u²}{tanx}du \\
& = \int \frac{u²}{u²}du = \int du \\
& = u + C = \sqrt{tanx}+C
 \end{align*}\)

\[\boxed {\begin{align*} I & = \sqrt{tanx}+C(\in \mathbb R) \end{align*}}\]