\(\begin{align*} \int\frac{x}{1+x^4}dx\end{align*}\)

Connaissances:

  • Reconnaitre la forme \(\frac{2u'}{1+u²}\)

 

\(\begin{align*} I & = \int \frac{x}{1+x^4}dx  \\
& = \int \frac{x}{1+(x²)²}dx \\
& = \frac{1}{2} \int \frac{2x}{1+(x²)²}dx \\
& = \frac{1}{2} tan^{-1}x²+C \end{align*}\)

\[\boxed {\begin{align*} I & =\frac{1}{2} tan^{-1}x²+C(\in \mathbb R) \end{align*}}\]