|
\( \begin{align*} I & = \int \frac{1}{x^4+x}dx \\ & = \int \frac{1}{x(x^3+1)}dx \\ & = \int \frac{1}{x(x+1)(x²-x+1)}dx \\ \end{align*}\)
Procédons maintenant à une décomposition en éléments simples: \( \begin{align*}& \frac{1}{x(x+1)(x²-x+1)} = \frac{A}{x} +\frac{B}{x+1} + \frac{Cx+D}{x²-x+1} \\ & \begin{cases} \times (x+1) \text{ et } x=-1 \Rightarrow \frac{1}{-1((-1)²-1-1)}=B & \Rightarrow B=1 \\ \times x \text{ et }x=0 \Rightarrow \frac{1}{(0+1)(0²-0+1)}=A & \Rightarrow A=1 \\ \Rightarrow \frac{1}{x(x+1)(x²-x+1)} = \frac{1}{x} +\frac{1}{x+1} + \frac{Cx+D}{x²-x+1} \\ x=1 \Rightarrow \frac{1}{2}= 1+\frac{1}{2} + \frac{C+D}{1} & \Rightarrow C+D=-1 \\ x=2 \Rightarrow \frac{1}{2(2+1)(2²-2+1}= \frac{1}{2}+\frac{1}{2+1}+ \frac{2C+D}{2²-2+1} \\ \Rightarrow \frac{1}{18}= \frac{5}{6}+ \frac{2C+D}{3} & \Rightarrow 2C+D = \frac{-14}{6}=\frac{-7}{3} \\ \Rightarrow \begin{cases}C=\frac{-7}{3}+1 = \frac{-4}{3} & & \Rightarrow C= \frac{-4}{3} \\ D= -1-C=-1+ \frac{4}{3} & & \Rightarrow D = \frac{1}{3} \end{cases} \end{cases} \\ &\Rightarrow \frac{1}{x(x+1)(x²-x+1)} = \frac{1}{x} +\frac{1}{x+1} + \frac{-4/3x+1/3}{x²-x+1} \end{align*}\)
Autre méthode :
\( \begin{align*} I & = \int \frac{1}{x^4+x}dx \\ & = \int \frac{1}{x^4(1+x^{-3})}dx \\ & = \int \frac{x^{-4}}{1+x^{-3}}dx \\ \end{align*}\)
On remarque une forme en \(u'/u\). Procédons maintenant à un changement de variable:
\( \begin{align*} & \begin{cases} u = 1+x^{-3} \\ du = -3x^{-4}dx \Rightarrow dx =\frac{du}{-3x^{-4}} \end{cases} \\ I & = \int \frac{x^{-4}}{1+x^{-3}}dx \\ & = \int \frac{x^{-4}}{u} \times \frac{du}{-3x^{-4}} \\ & = -\frac{1}{3}\int \frac{du}{u} \\ & = -\frac{1}{3} ln \lvert u \rvert +C \\ & = -\frac{1}{3} ln \lvert 1+x^{-3} \rvert +C \end{align*}\)
\[ \boxed{ \begin{align*} I = -\frac{1}{3} ln \lvert 1+x^{-3} \rvert +C(\in \mathbb R) \end{align*}}\]
|