\(\begin{align*} \int \frac{1}{e^x+e^{-x}}dx \end{align*}\) |
Connaissances:
- exponentielles
- changement de variable
- primitive de \(\frac{1}{x²+1}=tan^{-1}x\)
|
\(\begin{align*} I & = \int \frac{1}{e^x+e^{-x}}dx \\ Posons le changement de variable \(u =e^x\) \(\begin{align*} & \begin{cases} u = e^x \\ du = e^x dx \end{cases} \\ \[ \boxed{\begin{align*} I = tan^{-1}(e^x)+C (\in \mathbb R)\end{align*}}\] |